约束最优化方法 (三) 外部罚函数法

算法:已知:约束问题:
m i n f ( x ) ; s . t .    s i ( x ) ≥ 0 ,    i = 1 , 2 , ⋯   , m , h j ( x ) = 0 , j = 1 , 2 , ⋯   , l min f(x); \\ s.t. \ \ s_{i}(x) \geq 0, \ \ i=1,2,\cdots, m, \\ h_{j}(x) = 0, j =1,2,\cdots, l minf(x);s.t.  si(x)0,  i=1,2,,m,hj(x)=0,j=1,2,,l
的目标函数 f ( x ) f(x) f(x),等式约束函数 h 1 ( x ) , ⋯   , h l ( x ) h_{1}(x),\cdots ,h_{l}(x) h1(x),hl(x)和不等式约束函数 s 1 ( x ) , ⋯   , s m ( x ) s_{1}(x),\cdots ,s_{m}(x) s1(x),sm(x);终止限 ε \varepsilon ε(可取 ε = 1 0 − 6 \varepsilon=10^{-6} ε=106);设由约束函数构成造的罚函数为:
α ( x ) = ∑ j = 1 l [ h j ( x ) ] 2 + ∑ i = 1 m [ s i ( x ) ] 2 u ( s i ( x ) ) \alpha(x)=\sum_{j=1}^{l}[h_{j}(x)]^{2}+\sum_{i=1}^{m}[s_{i}(x)]^{2}u(s_{i}(x)) α(x)=j=1l[hj(x)]2+i=1m[si(x)]2u(si(x))

  1. 选定初始点 x 0 x_{0} x0;选取初始罚因子 μ 1 > 0 \mu_{1}>0 μ1>0(可取 μ 1 = 1 \mu_{1}=1 μ1=1),罚因子的放大系数 c > 1 c>1 c>1(可取 c = 10 c=10 c=10);置 k = 1 k=1 k=1
  2. x k − 1 x_{k-1} xk1为初始点,求解无约束问题:
    m i n f ( x ) + μ k α ( x ) min f(x)+\mu_{k}\alpha(x) minf(x)+μkα(x)
    设其极小点为 x k x_{k} xk
  3. μ k α ( x k ) < ε \mu_{k}\alpha(x_{k})<\varepsilon μkα(xk)<ε,打印 x k x_{k} xk,停机;否者转4。
  4. μ k + 1 = c μ k \mu_{k+1}=c\mu_{k} μk+1=cμk k = k + 1 k=k+1 k=k+1转2。

我的微信公众号名称:深度学习与先进智能决策
微信公众号ID:MultiAgent1024
公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 猿与汪的秘密 设计师:上身试试 返回首页